Nanocrystalline Materials at Equilibrium: A Thermodynamic Review
نویسندگان
چکیده
منابع مشابه
Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium
We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed sing...
متن کاملA Thermodynamic Analysis of Mitotic Spindle Equilibrium at Active Metaphase
The mitotic apparatus of first-division metaphase eggs of the sea urchin Strongylocentrotus drobachiensis was observed by means of polarization microscopy under controlled temperature conditions. Eggs were fertilized and grown at two temperature extremes in order to produce two different sizes of available spindle pool. Slow division time allowed successive samples of such cells to be observed ...
متن کاملStresses in nanocrystalline materials
Thin film Ni-Cu diffusion couples (individual layer thicknesses: 50 nm) were prepared by direct-current magnetron sputtering on silicon substrates. Interdiffusion and solid-solution formation, the associated changes of microstructure and the evolution of mechanical stresses of the Ni-Cu diffusion couples during thermal treatments were investigated employing ex-situ X-ray diffraction phase and t...
متن کاملNanocrystalline materials and coatings
In recent years, near-nano (submicron) and nanostructured materials have attracted increasingly more attention from the materials community. Nanocrystalline materials are characterized by a microstructural length or grain size of up to about 100 nm. Materials having grain size of 0.1 to 0.3 mm are classified as submicron materials. Nanocrystalline materials exhibit various shapes or forms, and ...
متن کاملThe effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties
This work has considered the intrinsic influence of bond energy on the macroscopic, thermodynamic, and mechanical properties of crystalline materials. A general criterion is proposed to evaluate the properties of nanocrystalline materials. The interrelation between the thermodynamic and mechanical properties of nanomaterials is presented and the relationship between the variation of these prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOM
سال: 2015
ISSN: 1047-4838,1543-1851
DOI: 10.1007/s11837-015-1636-9